Test 2, Linear

Name:
D Number:
I pledge that I have neither given nor received any unauthorized assistance on this exam
${(signature)}$

DIRECTIONS

- 1. Show all of your work. A correct answer with insufficient work will lose points.
- 2. Read each question carefully and make sure you answer the the question that is asked. If the question asks for an explanation, make sure you give one.
- 3. Clearly indicate your answer by putting a box around it.
- 4. Calculators are allowed on this exam.
- 5. Make sure you sign the pledge and write your ID on both pages.
- 6. The first 5 questions on the test are <u>required</u>, all of them will add to your final score. Of the last six questions (numbers 6 through 11), I will drop your lowest score. Thus you can choose to only do 5 of the last six questions, if you wish.
- 7. Number of questions = 11. Total Points = 100.

ID Number: _____

1. (5 points) Let $A = \begin{bmatrix} 1 & 3 & 5 & 0 \\ 0 & 1 & 4 & -2 \end{bmatrix}$. Find a nonzero vector in Col A and a nonzero vector in Nul A.

- 2. (15 points) True or False: If true, briefly explain why. If false, explain why or give a counterexample.
 - (i) If A and B are 2×2 matrices with columns $\mathbf{a}_1, \mathbf{a}_2$ and $\mathbf{b}_1, \mathbf{b}_2$ respectively, then $AB = \begin{bmatrix} \mathbf{a}_1 \mathbf{b}_1 & \mathbf{a}_2 \mathbf{b}_2 \end{bmatrix}$.

(ii) $\det(A+B) = \det A + \det B$.

(iii) Let A be a square matrix. If A^T is not invertible, then A is not invertible.

(iv) If \mathbf{f} is a function in the vector space V of all real-valued functions on \mathbb{R} and if $\mathbf{f}(t) = 0$ for some t, then \mathbf{f} is the zero vector in V.

3. (12 points) Find the inverse of the matrix $\begin{bmatrix} 1 & 3 & 0 & 0 \\ -2 & -5 & 0 & 0 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & -7 & 8 \end{bmatrix}.$

4. (6 points) Calculate $\frac{\det A}{\det B}$ where

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ -3 & -1 & -7 & -5 \end{bmatrix} \text{ and } B = \begin{bmatrix} k & k & k & k \\ 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ -3 & -1 & -7 & -5 \end{bmatrix}$$

and k is some nonzero real number. Hint: $\det A \neq 0$ and you do not need to actually calculate the determinants to get the answer.

5. (12 points) Calculate the determinants:

(a) det
$$\begin{bmatrix} -3 & 7 & 5 & \pi & 17 \\ -2 & 1 & 8 & -3 & 5 \\ 1 & 1 & 1 & 1 & 1 \\ 4 & -2 & -16 & 6 & -10 \\ \sqrt{3} & 97 & 2 & 4 & 6 \end{bmatrix}$$

(b)
$$\det \begin{bmatrix} 1 & 0 & 2 & 3 \\ -1 & 0 & 0 & -2 \\ 2 & -3 & 17 & 0 \\ 5 & 0 & 1 & 2 \end{bmatrix}$$

Of the remaining 6 questions, your lowest score will be dropped

- 6. (10 points) Let A be an $m \times n$ matrix and suppose that $AD = I_m$.
 - (a) Show that for any **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution. (Hint: Think about the equation $AD\mathbf{b} = \mathbf{b}$)
 - (b) Explain why A cannot have more rows than columns.

- 7. (10 points) Let $A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$.
 - (a) Construct a 4×2 matrix D using only 1 and 0 as entries, such that $AD = I_2$ (I_2 is the 2×2 identity matrix).
 - (b) Is it possible to find a 4×2 matrix C such that $CA = I_4$? Why or why not?

- 9. (10 points) Suppose that A is a square matrix such that $\det(A^4) = 0$.
 - (a) Explain why A cannot be invertible.
 - (b) Does A have to be the zero matrix? If yes, explain why. If no, give a counterexample (that is, a 4×4 matrix A that is <u>not</u> the zero matrix but has the property that $\det(A^4) = 0$).

- 10. (10 points) Let $M_{2\times 4}$ be the vector space of all 2×4 matrices with the usual operations of addition and scalar multiplication.
 - (a) Let F be a fixed 3×2 matrix, and let H be the set of all matrices A in $M_{2\times 4}$ such that $FA = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Determine if H is a subspace of $M_{2\times 4}$.
 - (b) Let G be the set of all matrices in $M_{2\times 4}$ with entries that are nonnegative. That is, for all $A = [a_{ij}]$ in H, we have $a_{ij} \geq 0$. Determine if G is a subspace of $M_{2\times 4}$.

